LogoLogo
  • Getting Started
  • 🔍Taxonomy
    • Introduction
    • Effect (SEP) View
      • Security
      • Ethics
      • Performance
    • Lifecycle View
    • Schema
  • 📦Database
    • Introduction
    • Framework
      • Base Classes
      • Auxiliary Classes
    • 🛠️Backend
    • 🛠️Editorial Interface
  • 👷‍♀️Developer Tools
    • Python SDK
      • Datamodels
      • Connectors
      • 🛠️Integrations
        • garak
        • ModsysML (Apollo)
        • 🐢Giskard
        • Inspect AI
      • API Reference
Powered by GitBook
On this page
  1. Developer Tools
  2. Python SDK
  3. Integrations

ModsysML (Apollo)

PreviousgarakNextGiskard

Last updated 1 month ago

Maintained by , is an open-source model management toolkit for continuous model improvement. It helps generative AI developers evaluate and compare LLM outputs, test quality, as well as catch regressions and automate their evaluations.

The module generates AVID reports from LLM evaluation runs performed by ModsysML. To do so, you need information of the model to be evaluated, a text-based summary of the outcomes, details of the evaluation outcomes dataset (description, link to its location in your local/cloud storage), and finally a path to save the report.

Here is a minimal example of the above, for an evaluation done on gpt-3.5-turbo by OpenAI.

# Source: https://github.com/modsysML/modsysML/blob/main/modsys/connectors/avid/cloud.py
from modsys.connectors.avid.cloud import AVIDProvider

AVIDProvider().create_report(
    provider_name = 'openai',
    provider_model = 'gpt-3.5-turbo',
    dataset_name = 'eval_data',
    dataset_link - 's3://your/bucket/eval_data.csv',
    summary = '',
    path_to_save_report = '/path/to/report/eval_report.json'
)
👷‍♀️
🛠️
Apollo
ModsysML
modsys.connectors.avid